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Spatial+: a new cross

-validation method

to evaluate geospatial machine learning

Spatial prediction machine learning
model’s evaluation and cross-validation

Geospatial prediction studies, such as soil mapping, ecological modeling, have
extensively employed Machine Learing (ML) models. The evaluation of the
model is a crucial step. To obtain reliable results, a test set that unbiasedly
represents the prediction locations is needed. However, obtaining an additional
test set is frequently impractical. Thus, the available samples must be partitioned
into training and validation subsets to implement the evaluation.

The random k-fold cross-validation (RDM-CV) is a commonly used method for
evaluating the ML model, but it may not be suitable for geospatial prediction,
where available sample data and prediction locations usually have obvious
differences. For example, samples may be distributed in spatial clusters, or the
model may be required to predict a new area, i.e., extrapolation. RDM-CV cannot
account for the differences by its random split. As a result, the model’s evaluation
result of RDM-CV will be over-optimistic.

Since the 2000s, a series of spatial CV methods have been proposed such as
buffer CV, weighted CV, and block CV (BLK-CV). All these methods reflect the
differences between training and validation samples by keeping them far away
and not spatially autocorrelated. However, in such a manner, the differences can
only be considered from the geographic space, while many of them which affect
the model’s prediction are derived from the feature space. Thus, in this work, we
propose a new CV method to guarantee the split training and validation subsets
provides a more accurate representation of the actual existed differences.

Spatial+ cross-validation

As figure 1 shows, the proposed method (spatial+ cross-validation, SP-CV) is
composed of two stages to consider both the geographic and feature spaces to
comprehensively reflect the differences between the samples data and prediction
locations.

The 1st stage addresses spatial autocorrelation issues by using agglomerative
hierarchical clustering (AHC) to divide the available samples into blocks. AHC is a
“bottom-top” clustering method that always merges the closest samples pair or
sub-clusters pair. The 1st stage improves the block’s division by addressing the
samples' spatial distribution.

The 2nd stage accounts for the differences in both the geographic space
(locations) and feature space (covariates and target variable). It uses cluster
ensembles (CE) to split folds. First, all blocks acquired from the 1st stage are
separately clustered based on locations, target variable, and covariates
respectively. Then, as shown in figure 1, the CE is used to combine them
together to reflect the differences in both the geographic and feature spaces.

Experimemts & Results

In this research, the proposed SP-CV was compared with the traditional CV —
RDM-CV and the typical spatial CV — BLK-CV. The experiments workflow is

shown as figure 2.
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Figure 2: The workflow of the experiments.
The experiments were implemented on two datasets: 1) Brazil Amazon basin above
ground biomass (AGB) dataset, with 28 covariates and 1km? resolution 928 * 1642
layer. 2) California houseprice dataset with 9 covariates and 20640 records.

The Amazon AGB dataset is used to simulate the actual situation of clustered
samples. Thus, its experiments setup (test set and samples) is shown like figure
3(a). The California houseprice dataset is used to simulate the actual situation of
extrapolation, its experiments setup is shown as figure 3(b).
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Figure 3: Experiments examples. Left (a):AGB .
dataset. Right (b): Houseprice dataset.
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Random forest was adopted as the spatial ML prediction model. The experiments
were repeated 10 times to reduce the random effect. Root-mean-square-error
(RMSE) was chosen as the metric of the prediction error.

Compare all CV methods prediction errors.with the standard prediction error, the
error differences — dg,— can be calculated. In all experiments, the proposed SP-CV
has the lowest dg,, which suggests that T akion ch s
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evaluating the spatial ML model when

Figure 1: The flowchart of the spatial+ cross-validation.
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